
[bookmark: _Toc209513982]Required Features
The features shown below are given in more details in the steps within the project, this is for outline and to assist in understanding the context of the opportunity outlined above.
You are to develop API endpoints for the following features:
· Jokes
· Users
· Categories
· Votes
· Authentication
More details will be given in the following sections and may include additional work for the pre-requisite features.
General: ERD
A possible Database Design is shown below:
[image: A diagram of a joke

AI-generated content may be incorrect.]
Note that a Joke may now have many categories, which encompasses the previous category and tag parts of the application.







General: Tables
On the following pages are shown a general overview of the tables for the joke database.
No field sizes are given.
	Table 
	Field
	Notes

	User
	Id
	

	
	Given name
	OPTIONAL
If you implement the given and family names then the following rules are applied:
At least one of the Family Name or Given Name must be provided. The Family Name will store the name in this case.
The default “name” field is to be used as the nickname/preferred name.

	
	Family name
	

	
	Name, Nickname, or Preferred name
	You may use Name only, and in this case do not change the defaults.
If you implement a Given and Family name, then this field will represent a nickname or preferred name for the responses from the API.
By default, the nickname is the given name, unless none is provided, then the family name is used.

	
	Email
	

	
	Password
	

	
	Email verified at
	

	
	Status
· This feature may be split into separate fields: Suspended, Active and Banned

	OPTIONAL
Status is used to identify a user who is ‘Suspended’, ‘Active’ or ‘Banned’.
‘Suspended’ requires them to change their password and verify their account to become active. When verified, the status changes to ‘Active’.
‘Banned’ users cannot undo their ban themselves. They must contact an admin. Admin may change banned users to ‘Suspended’.
‘Active’ is always the status of a user that is not suspended, banned or not verified.


	Joke
	Id
	

	
	User Id (Author)
	

	
	Joke title
	Joke title is a maximum of 64 or 96 characters


	
	Joke text
	Joke text will contain Markdown.


	
	Reference
	OPTIONAL
Reference is used for adding URI links to the origin of the joke.

	Category
	Id
	

	
	Name
	Name required

	
	Description
	Description optional

	Category-Joke
	Id
	A joke cannot have the same category more than once, and a category cannot have the same joke more than once.

	
	Joke Id
	Joke Id and Category Id must be indexed as Unique.


	
	Category Id
	

	Vote
	Id

	

	
	User id

	User ID and Joke ID must be indexed as unique.


	
	Joke id

	

	
	Rating

	Users may vote for the joke once. Users may alter their vote (rating). 
Rating is a simple thumbs up or down. Thumbs up is equal to +1 points, Thumbs down -1 points.
Average Rating:
(Count of Thumbs up or down – Count thumbs down) / (Count thumbs up or down) * 100%
E.g. 5 Up, 1 Down  (6 - 1) / 6 = 5 / 6 = 83.33%
E.g. 7 Up, 0 Down  (7 + 0) / 7 = 100%
E.g. 0 Up, 3 Down  (3 – 3) / 3 = 0%


	Role & Permission
	From Spatie Roles & Permissions
	This comes from the Spatie Roles and Permissions package and is defined as part of this.
Users may have more than one role.
Users may be given individual additional specific permissions.


General: Roles & Permissions
It is possible to define roles and permissions for the features of the API. The table below shows an extract of possible set of permissions that could be used for more defined (granular) access to the features of user administration. Please refer to the User Admin step for precise details.
	User type
	Browse (all)
	Read (one)
	Edit
	Add
	Delete
	Search
	Notes

	Client
	No
	Only Own
	Only Own
	No
	Only Own
	No
	Soft deletes are used, no access to account recovery


It is more important to implement the specific actions, roles and permissions as per the following steps of this assessment.
[bookmark: _Toc209513983]Development, Testing & Documentation
Development of the Web Application must include:
· PEST (feature) tests must be written for each feature and its components.
· All data must be validated.
· Correct HTTP Responses will be given (200 OK, 201 Created, 404 Not Found, 403 Forbidden, etc).
· A standardised JSON response structure will be used. A common structure is:
{
  "success": true|false,
  "message": "Some form of message",
  "data": { 
    ...
  }
}
· The response structure may be amended to include an "errors" field that contains an array of errors.
[bookmark: _Toc209513987]Step 2: Implementation and Testing of Features
You do NOT have to implement these features in the prescribed order.
You may find it easier to implement without authorisation or roles and permissions before adding these to the API.
We will list the features and details associated with each one.
Feature: Voting (Likes/Dislikes)
The vote feature will allow a client to perform actions on Votes. 
The Actions and permissions for this feature are defined as:
	Role
	Level
	Actions
	Notes

	Guest (Unregistered)
	0
	NONE
	Unable to vote

	Client
	100
	May perform SOME of the BREAD actions, which include:
· Add own vote for a joke.
· Edit own vote for a joke.
· Remove own vote for a joke.
	Must be verified before able to perform these actions.
Cannot vote on jokes with an unknown or empty category, or whose category is soft deleted.


	Staff
	500
	May perform SOME of the BREAD actions, which include:
· Add own vote for a joke.
· Edit own vote for a joke.
· Remove own vote for a joke.
Plus:
· Clear all votes by a user.
	

	Admin
	750
	All actions of the Staff.
	

	Superuser
	999
	As above, plus:
· Backup vote data to external location.
	


Key relationships include, but may not be limited to:
· A joke has zero or more votes
· A vote has zero or one joke
· A vote belongs to one user
· A user has zero or more votes

Feature: Roles & Permissions
Permissions
· No API
· Migration
· Seeder
Permissions are programmatically fixed. We do NOT allow permissions to be added, edited, nor deleted.
Roles
· BREADS (CRUD)
· Migration
· Seeder
· Data validation
Roles may be added, edited and deleted.
The Super-Admin role MUST NOT be allowed to be Deleted. Super-Admin always has full access to all features.
Permissions & Roles Table
	User type
	Browse (all)
	Read (one)
	Edit
	Add
	Delete
	Search
	Notes

	Unregistered,
Client,
Staff
	No
	No
	No
	No
	No
	No
	-

	Administrator
	All
	Any
	Any
	Yes
	No
	Yes
	-

	Super-User
	All
	Any
	Any
	Yes
	Any
Cannot delete super-admin role
	All
	-






Feature: Authentication
Authentication
· Login 
· Logout
· Password reset
Authentication Pest Tests
Make sure you provide the minimum tests:
· Log in correct user data
· Login with incorrect user data
· Logout
· Force Logout of all users in a role
Permissions & Roles Table
	User type
	Login
	Logout
	Register
	Reset Password
	Notes

	Guest (Unregistered)
	No
	No
	Yes
	No
	Must register to work on account 

	Client
	Yes
	Self
	No
	Yes
	

	Staff
	Yes
	All
May logout other individual Client users
	No
	Yes
Send reset for users who are clients
	

	Administrator
	Yes
	All
May logout ALL users with role Staff, Client
	No
	Yes
Send reset for users who are Staff or Client
	

	Super-User
	Yes
	All
May logout all other users including Clients, Staff, and Administrators.
	No
	Yes
Send reset for any user from any role
	






Feature: User (Profile)
The user profile is NOT THE SAME as the User Admin.
Each user has their own profile (name, email. Password etc).
They are allowed to edit their own data.
User Profile
· Edit
Profile Pest tests
Make sure you provide the minimum tests:
· Update own data
· Unable to access different user
· Able to delete own account
Permissions & Roles Table
	User type
	Read
	Edit
	Notes

	Guest (Unregistered)
	No
	No
	Must register to work on account 

	Client
	Own
	Own
	

	Staff
	Own
	Own
	

	Administrator
	Own
	Own
	

	Super-User
	Own
	Own
	





Feature: Categories
The category feature will allow a user to perform actions on Categories. Depending on the user’s role and permissions the actions they may perform include the ability to:
· Browse, read, edit, add and delete,
· Search
For this step, you must:
· Implement the Category API if it is not completed already,
· Create Tests to verify the Category API,
· Run tests on your code,
· Fix any issues when testing is executed,
· Ensure the feature is complete for all roles and permissions.
Whilst performing the above you must:
· Answer any questions in the 2 Answer: API section of this document,
· Add evidence in the 3 Evidence:  section within this document.

Pest Tests
Make sure you provide the minimum tests:
· Logged in user can retrieve categories
· Unable to access different user
· Able to delete categories created by themselves



Categories Roles/Permissions
Permissions for this set of actions are defined as:
	Role
	Level
	Actions
	Notes

	Guest
	0
	None
	Unable to interact with categories

	User
	100
	Search
Browse
Show

	Must be verified before able to perform these actions.
When show is used, the user will be presented with five random jokes as part of their data.
Cannot see other people’s jokes with an unknown or empty category, or whose category is soft deleted.

	Staff
	500
	Perform all BREAD/CRUD actions and search.
Categories:
· Are SOFT DELETED, and
· May be RESTORED by this role or higher-level roles.
	A category, when deleted, it is moved to the trash can (soft delete).
“Soft deleted” categories are not available to users below the Staff level.


	Admin
	750
	All actions of the Staff, plus:
· Permanently remove categories (from Trash).
· Restore soft deleted categories.
	Removal of a category will remove the category from all jokes.
Any joke without a category will then be assigned “unknown”.

	Superuser
	999
	As above, plus:
· Backup category data to external location.
	



Key relationships include, but may not be limited to:
· A joke has zero or more categories
· A category has zero or more jokes



Feature: Jokes
The joke feature will allow a client to perform actions on Jokes. This includes the ability to:
· Browse, read, edit, add and delete,
· Search
Remember that the Joke BREAD has restrictions. These may include 
	- User/Staff/Admin/Super-Admin - Browse, Read any
	- User - Add, Edit, Delete own jokes
	- Staff/Admin/Super-Admin - BREAD on all Jokes
Overview
For this step, you must:
· Implement the User API,
· Create Tests to verify the User API,
· Run tests on your code,
· Fix any issues when testing is executed,
· Ensure the feature is complete for all roles and permissions.
Whilst performing the above you must:
· Answer any questions in the 2 Answer: API section of this document,
· Add evidence in the 3 Evidence:  section within this document.








Continued overleaf…

Permissions/Roles Summary
Permissions for this set of actions are defined as:
	Role
	Level
	Actions
	Notes

	Guest
	0
	Register
	Can only retrieve ONE random joke.
No unknown category jokes are available.

	Client
	100
	Search
Browse
Show
	Must be verified before able to perform these actions.
When show is used, the user will be presented the data from the requested joke.
Cannot retrieve  jokes with an unknown or empty category, or whose category is soft deleted.

	Staff
	500
	Perform all BREAD/CRUD actions and search.
Categories are SOFT DELETED and may be RESTORED by higher level roles.
	Note that a category, when deleted, it is moved to the trash can (soft delete).
“Soft deleted” categories are not available to users below the Staff level.

	Admin
	750
	All actions of the Staff, plus:
· Permanently remove categories.
· Undo soft deleted categories.
	

	Superuser
	999
	As above, plus:
· Backup category data to external location.
	


Key relationships include, but may not be limited to:
· A joke has zero or more categories
· A category has zero or more jokes




Continued overleaf…

Pest Tests
Make sure you provide the minimum tests:
· A guest is able to generate a rand joke
· Logged in user may perform operations on Jokes based on Permissions table
· Browse, 
· Read, 
· Edit, 
· Add and 
· Delete.

Permissions & Roles Table
The Categories permissions table in detail.
	User type
	Browse (all)
	Read (one)
	Edit
	Add
	Delete
	Search
	Notes

	Unregistered
	No
	No
	No
	No
	No
	No
	Must register to work on account 

	Client
	No
	Only Own
	Only Own
	No
	Only Own
	No
	Soft deletes are used, no access to account recovery

	Staff
	All
	All
	Only own
Clients
Applicants
	Yes Limited
Clients
Applicants
	Clients, Applicants
Cannot delete themselves, Administrators or Super-users
	All
	Soft deletes are used, no access to account recovery.

	Administrator
	All
	All
	All
	All
	Clients, Applicants, Staff
Cannot delete themselves, Administrators or Super-users
	All
	Soft deletes are used
No access to account recovery.

	Super-User
	All
	All
	All
	All
	Any
Cannot delete themselves
	All
	Soft deletes are used
No access to account recovery.





Feature: Like/Dislike aka Voting
For this step, you must:
· Implement the Voting API,
· Create Tests to verify the API,
· Run tests on your code,
· Fix any issues when testing is executed,
· Ensure the feature is complete for all roles and permissions.
Overview
The Voting API is for adding Likes/Dislikes and modifying these requests.
The Voting (Like/Dislike) may be tackled in several ways. For example:
· Option 1
· Use Only POST to send value for like on a joke, code determines if Create, Edit or Delete.
· Option 2
· Use the full BREAD - and have each endpoint actioned as needed (more complex).
Remember that user must be authenticated to like/dislike.
Pest Tests
Make sure you provide the minimum tests:
· A guest is unable to vote in any way
· Logged in user may perform operations on Jokes based on Permissions table
· Browse, 
· Read, 
· Edit, 
· Add and 
· Delete.


Permissions/Roles Summary
Permissions for this set of actions are defined as:
	Role
	Level
	Actions
	Notes

	Guest
	0
	NONE
	Cannot Like/Dislike jokes


	Client
	100
	Registered users may perform the following actions on any joke:
· Add a Like or Dislike
· Change to Dislike or Like
· Remove their vote completely
They may only change/remove their own votes.

	Must be verified before able to perform these actions.
May only perform these actions on their own votes.
May perform actions on any accessible joke.


	Staff
	500
	Basic actions are as per a client user.

	As per Client user.


	Admin
	750
	All actions as per Staff.
Admin may also:
· Remove ALL votes made by a Staff or Client user.

	

	Superuser
	999
	As above, and they may also:
· Reset the votes for ALL users.
· Reset the votes made by any individual user.

	


Key relationships include, but may not be limited to:
· A joke has zero or more categories
· A category has zero or more jokes



Feature: User Admin
For this step, you must:
· Implement the User API,
· Create Tests to verify the User API,
· Run tests on your code,
· Fix any issues when testing is executed,
· Ensure the feature is complete for all roles and permissions.
Whilst performing the above you must:
· Answer any questions in the 2 Answer: API section of this document,
· Add evidence in the 3 Evidence:  section within this document.
Overview
The users feature will allow a user to perform actions on Users. This includes the ability to:
· Browse, read, edit, add, delete (BREAD/CRUD)
· Search
· Add or change user role
· Register
· Login
· Verify email
· Change password
Not all roles will be able to perform all the above actions.









Continued overleaf…

Roles/Permissions Summary
Permissions for this User Feature actions are defined as:
	Role
	Level
	Actions
	Notes

	Guest
	0
	Register
	


	Client
	100
	Verify email

	Must be verified before able to perform other actions.


	
	
	Edit own user data
Edit own profile
Delete own profile
	Ordinary users are unable to browse, add, edit, delete, search other users in the system.
They are only able to access their own information.
Deleting own profile removes all jokes they added and all votes they made.


	Staff
	500
	Edit own data
Edit profile data for users of lower role
Mark user as banned or suspended
May revert suspended user to active

	

	Admin
	750
	Create users
Edit users
Delete users
Edit roles for those with lower role
Ban users, suspend users, revert with of these statuses.

	An admin may revert a banned user to the suspended role. This will enable the user to change their password and verify their email account before being able to use the system.
Deleting a user removes all jokes they added and all votes they made.


	Superuser
	999
	Full access, including creating new users, assigning roles etc. 
That is, all possible actions the lower roles have.
One Superuser only
Backup user data to external location.

	


Key relationships include, but may not be limited to:
· A user has one Role
· A user has zero or more Jokes
· A user has zero or more Votes
User Admin Tests
	User type
	Browse (all)
	Read (one)
	Edit
	Add
	Delete
	Search
	Notes

	Unregistered
	No
	No
	No
	No
	No
	No
	Must register to work on account 

	Client
	No
	Only Own
	Only Own
	No
	Only Own
	No
	Soft deletes are used, no access to account recovery

	Staff
	All
	All
	Only own
Clients
Applicants
	Yes Limited
Clients
Applicants
	Clients, Applicants
Cannot delete themselves, Administrators or Super-users
	All
	Soft deletes are used, no access to account recovery.

	Administrator
	All
	All
	All
	All
	Clients, Applicants, Staff
Cannot delete themselves, Administrators or Super-users
	All
	Soft deletes are used
No access to account recovery.

	Super-User
	All
	All
	All
	All
	Any
Cannot delete themselves
	All
	Soft deletes are used
No access to account recovery.




[bookmark: _Toc209513988]Step 3: Testing and Code coverage
Ensure you have implemented Pest tests for the API end point. The test should cover at least:
· Authentication
· Jokes
· The application of Roles & Permissions
· Voting
Complete a review of your code to make sure all the following are completed, and working as expected:
· User feature completed and tested
· Vote feature completed and tested
Perform a Code Coverage using xDebug or a similar system. This code coverage report should show:
· An overview of the coverage, 
· A more detailed report of for the Users feature,
· A more detailed report of for the Jokes feature,
· A more detailed report of for the Votes feature.
Any feature you implement should have at least 50% code coverage.
Place your supporting evidence in the section 6 Evidence: Code Review.

If, during this review, you notice a very large gap in coverage of your tests, it is a very good idea to consider how to improve this.


image1.png
User Joke

Role Vote

Category





